958 research outputs found

    Atmospheric electricity/meteorology analysis

    Get PDF
    This activity focuses on Lightning Imaging Sensor (LIS)/Lightning Mapper Sensor (LMS) algorithm development and applied research. Specifically we are exploring the relationships between (1) global and regional lightning activity and rainfall, and (2) storm electrical development, physics, and the role of the environment. U.S. composite radar-rainfall maps and ground strike lightning maps are used to understand lightning-rainfall relationships at the regional scale. These observations are then compared to SSM/I brightness temperatures to simulate LIS/TRMM multi-sensor algorithm data sets. These data sets are supplied to the WETNET project archive. WSR88-D (NEXRAD) data are also used as it becomes available. The results of this study allow us to examine the information content from lightning imaging sensors in low-earth and geostationary orbits. Analysis of tropical and U.S. data sets continues. A neural network/sensor fusion algorithm is being refined for objectively associating lightning and rainfall with their parent storm systems. Total lightning data from interferometers are being used in conjunction with data from the national lightning network. A 6-year lightning/rainfall climatology has been assembled for LIS sampling studies

    Lightning Imaging Sensor (LIS) for the Earth Observing System

    Get PDF
    Not only are scientific objectives and instrument characteristics given of a calibrated optical LIS for the EOS but also for the Tropical Rainfall Measuring Mission (TRMM) which was designed to acquire and study the distribution and variability of total lightning on a global basis. The LIS can be traced to a lightning mapper sensor planned for flight on the GOES meteorological satellites. The LIS consists of a staring imager optimized to detect and locate lightning. The LIS will detect and locate lightning with storm scale resolution (i.e., 5 to 10 km) over a large region of the Earth's surface along the orbital track of the satellite, mark the time of occurrence of the lightning, and measure the radiant energy. The LIS will have a nearly uniform 90 pct. detection efficiency within the area viewed by the sensor, and will detect intracloud and cloud-to-ground discharges during day and night conditions. Also, the LIS will monitor individual storms and storm systems long enough to obtain a measure of the lightning flashing rate when they are within the field of view of the LIS. The LIS attributes include low cost, low weight and power, low data rate, and important science. The LIS will study the hydrological cycle, general circulation and sea surface temperature variations, along with examinations of the electrical coupling of thunderstorms with the ionosphere and magnetosphere, and observations and modeling of the global electric circuit

    Predicting thunderstorm evolution using ground-based lightning detection networks

    Get PDF
    Lightning measurements acquired principally by a ground-based network of magnetic direction finders are used to diagnose and predict the existence, temporal evolution, and decay of thunderstorms over a wide range of space and time scales extending over four orders of magnitude. The non-linear growth and decay of thunderstorms and their accompanying cloud-to-ground lightning activity is described by the three parameter logistic growth model. The growth rate is shown to be a function of the storm size and duration, and the limiting value of the total lightning activity is related to the available energy in the environment. A new technique is described for removing systematic bearing errors from direction finder data where radar echoes are used to constrain site error correction and optimization (best point estimate) algorithms. A nearest neighbor pattern recognition algorithm is employed to cluster the discrete lightning discharges into storm cells and the advantages and limitations of different clustering strategies for storm identification and tracking are examined

    OLS data system/global survey of lightning

    Get PDF
    A global lightning climatology is being assembled from the nighttime imagery of the DMSP Optical Linescan Sensor (OLS). Lightning saturates the visible channel of the OLS at nighttime and can be identified as a horizontal streak on the order of 50-100 km in horizontal extent. Lightning streaks apparent in the film strips located at the National Snow and Ice Data Center (NSIDC) prior to 1991 are being digitized. An initial survey was completed for the F7 satellite observation period January 1986 - October 1987 and for the Q satellite for the period June-July 1973. Comparisons between the OLS lightning climatology with the Arkin GPI data set during the 1986-87 El Nino event shows similar regional variations in convective activity. The digital archive of global DMSP data began at the end of February. Software is being developed at both MSFC and NSIDC to extract, navigate, and view the OLS fine and smooth imagery

    The GOES-R GeoStationary Lightning Mapper (GLM)

    Get PDF
    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), and improved capability for the Advanced Baseline Imager (ABI). The Geostationary Lighting Mapper (GLM) will map total lightning activity (in-cloud and cloud-to-ground lighting flashes) continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency among a number of potential applications. In parallel with the instrument development (a prototype and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms (environmental data records), cal/val performance monitoring tools, and new applications using GLM alone, in combination with the ABI, merged with ground-based sensors, and decision aids augmented by numerical weather prediction model forecasts. Proxy total lightning data from the NASA Lightning Imaging Sensor on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional test beds are being used to develop the pre-launch algorithms and applications, and also improve our knowledge of thunderstorm initiation and evolution. An international field campaign planned for 2011-2012 will produce concurrent observations from a VHF lightning mapping array, Meteosat multi-band imagery, Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) overpasses, and related ground and in-situ lightning and meteorological measurements in the vicinity of Sao Paulo. These data will provide a new comprehensive proxy data set for algorithm and application development

    The GOES-R Series Geostationary Lightning Mapper (GLM)

    Get PDF
    The Geostationary Operational Environmental Satellite (GOES-R) is the next series to follow the existing GOES system currently operating over the Western Hemisphere. Superior spacecraft and instrument technology will support expanded detection of environmental phenomena, resulting in more timely and accurate forecasts and warnings. Advancements over current GOES capabilities include a new capability for total lightning detection (cloud and cloud-to-ground flashes) from the Geostationary Lightning Mapper (GLM), which will have just completed Critical Design Review and move forward into the construction phase of instrument development. The GLM will operate continuously day and night with near-uniform spatial resolution of 8 km with a product refresh rate of less than 20 sec over the Americas and adjacent oceanic regions. This will aid in forecasting severe storms and tornado activity, and convective weather impacts on aviation safety and efficiency. In parallel with the instrument development (an engineering development unit and 4 flight models), a GOES-R Risk Reduction Team and Algorithm Working Group Lightning Applications Team have begun to develop the Level 2 algorithms, cal/val performance monitoring tools, and new applications. Proxy total lightning data from the NASA Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite and regional ground-based lightning networks are being used to develop the pre-launch algorithms, test data sets, and applications, as well as improve our knowledge of thunderstorm initiation and evolution. In this presentation we review the planned implementation of the instrument and suite of operational algorithm
    • …
    corecore